カーネル法

カーネル化

既存手法をカーネル法で扱う術について解説します。この記事の中ではカーネル化と呼びます。使うカーネルを決めるだけで、モデルの表現力を向上させることが出来ます。いくつかの例で実践してみます。
Python R

Google Colab によるpython環境構築

機械学習を始めるにあたって、環境を作るのが第一の壁になります。既に作られたライブラリが沢山あるので、python がオススメです。Google が提供するサービスを使うことで、python 環境が簡単に作れます。さらに、性能の良いパソコンを計算に使うことが出来るようになります。
統計学

Fisher情報量(Fisher情報行列)

Fisher 情報量(Fisher 情報行列)の定義と、その役割について解説します。統計量の推定をした時、推定量の分散の大きさについての情報を与えてくれるのがFisher 情報量(Fisher 情報行列)です。
カーネル法

カーネル法の為の線形代数

カーネル法でキーとなる概念は内積です。内積について解説しています。
ベイズ統計学

ベイズの定理応用(故障時期の予測)

対数正規分布は、モノが壊れる事象を表すのによく使われます。また、logを取ると正規分布に従うという性質を持ちます。故障の発生時期などをベイズの定理で予測する方法を紹介します。
カーネル法

カーネル法入門

カーネル法の入門記事です。カーネル法を使うメリットデメリットを、回帰分析、カーネル回帰、カーネルリッジ回帰を例に出して簡単に、分かりやすく解説します。。
統計学

回帰分析と正規分布

パラメーターが正規分布に従っていると仮定して、最尤法から回帰分析を導きます。リッジ回帰も同じような手法で導くことが出来る事を説明します。
ベイズ統計学

ベイズの定理計算練習

ベイズの定理定番の計算問題を考えます。正規分布に従うデータの平均値を推定する問題をベイズの定理で考えます。また、何個かデータを取得したとして、次に取得するデータの予測をベイズの定理で行ってみます。
統計学

正規分布の性質

正規分布の導入をします。確率になっていること、平均の値、分散の値を具体的に計算します。
ベイズ統計学

ベイズ統計学入門

、ベイズの定理について解説し、具体例の計算をします。良くあるサイコロの問題と、正規分布を事前分布に仮定した時の事後分布のパラメーターを求めます。
タイトルとURLをコピーしました