回帰分析

回帰分析の原理や計算方法について解説しています。回帰分析は、連続値を予測する手法です。

機械学習

回帰分析の概要

理論的な話は置いておいて、回帰分析で何が出来るか、精度はどう見るのかまどを説明しています。
統計学

回帰分析が分散分析を再現する話

大量の平均値を比べるには、t検定は危険をはらみます。平均値を比べて因子の効果を説明する手法として、変動の分解を元にした分散分析という手法があります。実は、回帰分析の特別な場合として捉える事を、分散分析と回帰分析と一緒に説明します。
統計学

最尤法って何?

確率分布のパラメーターを決めたい時、選択肢の一つに最尤法が上がります。最尤法は統計でも機械学習でも沢山出てくる手法です。変な解説も蔓延る世の中なので、丁寧に解説しました。
Python R

特徴量の評価方法をまとめてみた

機械学習の困りごとの一つとして、結果の解釈が難しいという事があります。しかし、特徴量の重要度を評価する手法は色々あります。この記事で紹介する手法で、大体のモデルに対応できます。
カーネル法

サポートベクトルマシン➂(サポートベクトル回帰)

サポートベクトルマシンを回帰問題に使う時はサポートベクトル回帰と呼びます。サポートベクトル回帰の原理を解説をします。サポートベクトル回帰は過学習しにくい訳を原理から解き明かします。カーネル回帰と比べて、圧倒的に汎化性能が高い事を実験で確かめます。
カーネル法

カーネル法入門

カーネル法の入門記事です。カーネル法を使うメリットデメリットを、回帰分析、カーネル回帰、カーネルリッジ回帰を例に出して簡単に、分かりやすく解説します。。
統計学

回帰分析と正規分布

パラメーターが正規分布に従っていると仮定して、最尤法から回帰分析を導きます。リッジ回帰も同じような手法で導くことが出来る事を説明します。
統計学

リッジ回帰分析

リッジ回帰の解説をします。重回帰分析にペナルティを課すモデルです。これによって、パラメーター全体が大きくなることが抑えられ、データ自体のバラツキを無視してくれるようになります。さよなら過学習。
機械学習

ニューラルネットワークの話

ニューラルネットワークについての小話です。計算グラフを用いて、ニューラルネットワークモデルを表します。分類問題をニューラルネットワークで解く実験もしています。
統計学

重回帰分析(2変数)

説明変数が2つの場合の重回帰分析について解説します。計算を詳しく書いています。
タイトルとURLをコピーしました