機械学習

機械学習

VAEとGANを生成画像で比較する

VAEとGANのモデルについて説明します。それぞれのモデルで、同じ題材で画像を生成させます。生成された画像を比較することで、両者の特徴を比べます。
機械学習

python で生成モデル(generative model)!

生成モデル(generative model)の解説記事です。生成モデルの概要を説明し、モデルの中身を見てみます。最後に、潜在空間( latent space)の大事さを確認して、手書き文字画像を生成させてみます。
時系列分析

ARモデルの定常/非定常性の判定方法

定常確率過程にも、非定常確率過程にもなるARモデルを紹介します。簡単な性質を紹介した後、定常/非定常となる条件を計算します。最後に、pythonで色々グラフを描いてAR過程の特徴を捉えます。
機械学習

2019年のまとめ

2019年のまとめと、来年の抱負記事です。今年最も読まれた記事や、もっと読まれても良い記事を残してます。
Python R

最も簡単な異常検知の手法-ホテリングのT2 理論

異常検知の入門ともいえる、ホテリングのT2理論を使ってみる記事です。python で1次元、多次元データに対する異常度の計算を実装します。
Python R

ベイズ統計学でブログのアクセス数を解析する

ブログを始めて4か月くらい経ちました。 最初の1週間はTwitterでフォローしてくれた人が見るだけと言うサイトでしたが、現在は検索エンジンから殆どのユーザーがブログを見てくれています。なんとなく、あるタイミングからアクセス数が増えたな~...
Python R

変分推論をpythonで実装する

ポアソン混合モデルを変分推論で近似するクラスをpython で実装します。ELBOを監視して、計算を早めに止めるEMアルゴリズムちっくな手法も実装します。
ベイズ統計学

変分推論入門

ベイズ統計学に、変分推論という技があります。この技はEMアルゴリズムを知っていると分かりやすくなります。原理を解説し、ポアソン混合モデルに対して変分推論を適用します。 変分推論 未知の確率分布\(p\)があるとしましょう。この...
Python R

ベイズ線形回帰とEMアルゴリズム

EMアルゴリズムを応用して、ベイズ線形回帰のパラメーターを予測します。パラメーターを更新するための式を導出して、pythonで実装します。
Python R

特徴量の評価方法をまとめてみた

機械学習の困りごとの一つとして、結果の解釈が難しいという事があります。しかし、特徴量の重要度を評価する手法は色々あります。この記事で紹介する手法で、大体のモデルに対応できます。
タイトルとURLをコピーしました