機械学習

2019年のまとめ

2019年のまとめと、来年の抱負記事です。今年最も読まれた記事や、もっと読まれても良い記事を残してます。
統計学

ベルヌーイ分布の応用2

統計検定2級の問題で、面白い問題があったので解答を載せます。ベルヌーイ分布から幾何分布を作ります。幾何分布の期待値と分散を、幾何分布が確率分布になっている、という事実と微分だけで導出します。
統計学

ベルヌーイ分布の応用1

統計検定2級の問題で、面白い問題があったので解答を載せます。母比率の検定の問題ですが、ベルヌーイ分布から二項分布を作ります。次に、二項分布から正規分布正規分布を作り、数を比率に書き換えて答えを出します。
Python R

最も簡単な異常検知の手法-ホテリングのT2 理論

異常検知の入門ともいえる、ホテリングのT2理論を使ってみる記事です。python で1次元、多次元データに対する異常度の計算を実装します。
Python R

ベイズ統計学でブログのアクセス数を解析する

ある時期からユーザー数が増えた感じがしていますが、機械学習で解析できないでしょうか。出来ます。ポアソン混合モデル+変分推論を使って当ブログのユーザー数を解析します。
Python R

変分推論をpythonで実装する

ポアソン混合モデルを変分推論で近似するクラスをpython で実装します。ELBOを監視して、計算を早めに止めるEMアルゴリズムちっくな手法も実装します。
ベイズ統計学

変分推論入門

変分推論でポアソン混合モデルを近似する式を導きます。最後に、EMアルゴリズムとの接点を紹介します。
Python R

ベイズ線形回帰とEMアルゴリズム

EMアルゴリズムを応用して、ベイズ線形回帰のパラメーターを予測します。パラメーターを更新するための式を導出して、pythonで実装します。
Python R

特徴量の評価方法をまとめてみた

機械学習の困りごとの一つとして、結果の解釈が難しいという事があります。しかし、特徴量の重要度を評価する手法は色々あります。この記事で紹介する手法で、大体のモデルに対応できます。
Python R

クラウドでディープラーニングして大丈夫?

ニューラルネットワークの勾配から、特徴量が復元できるという記事です。大切な情報を特徴量にしている場合は、クラウド上で計算を回す事にリスクがあります。
タイトルとURLをコピーしました